TESI DI LAUREA DISPONIBILI/AVAILABLE THESIS
Proposte Tesi di Laurea Magistrale / Topics for Master Theses
(the list is indicative: for details contact the teacher directly)
Topics in High Energy Physics:
Development and application of Machine-learning and Deep-learning for the reconstruction and selection of events in high energy physics experiments:
Machine Learning is one of the fields of data analysis and computational research that has received greater interest and attention in recent years. "Multivariate Analysis", "(Deep) Neural Networks", "Advanced classification or pattern recognition techniques", "Clustering Algorithms" etc., are techniques belonging to a general class of machine learning algorithms that are able to solve in a very efficient and powerful way a great variety of problems in high energy physics ranging from the development of real-time data filter systems (trigger systems), to the offline reconstruction of events, to data analysis proper. Several thesis topics are proposed on the subject, both oriented to the development of new Deep-learning algorithms to be used in the trigger systems of the ATLAS experiment, and to the application of Deep-NeuralNetworks in classification, prediction, anomaly detection, and generative algorithms to be applied in search for new physics and / or precision measurements in the new high-energy and statistical data samples recorded by the ATLAS experiment during Run 2 of LHC and that are currently acquired in Run 3..
Tipology: experimental, computational, modelling, data analysis
Large-Language Model based representation learning via multimodal Transformers of physical objects in an High Energy Phsycis Detector (@LHC, @FCCee, ...) and applications to multiboson measurements and searches:
the project focused in an innovative research, aiming at realizing a digital twin of a collider experiment thta can be used for different tasks: generative, anomaly detections, reconstruction etc... The digital twin will be based on a large language model in which the language is represented by the particles' interactions with the experiment's detectors.
Tipology: experimental particle physics, artificial intelligence and deep learning
Development and study of the performances of novel algorithms on FPGAs for muon reconstruction and identification in the ATLAS L0 Muon Barrel Trigger
The Level-0 muon trigger system of the ATLAS experiment will undergo a full upgrade for the High Luminosity LHC to stand the challenging requirements imposed by the increase in instantaneous luminosity. The upgraded trigger system will send raw hit data to off-detector processors, where trigger algorithms run on a new generation of FPGAs. To exploit the flexibility provided by the FPGA systems, ATLAS is developing novel algorithms based on both conventional methods and new deep neural network architectures that use quantised weights and activations, optimised to run on FPGAs for efficient reconstruction and identification of muons in the ATLAS "Level-0" trigger. The FPGA represents an optimal solution in this context, because of its flexibility, wide availability of logical resources and high processing speed. In this context the student will work within the ATLAS L0 Muon Barrel trigger group, in the design and deployment of novel fast trigger algorithms based on state-of-the-art machine learning algorithms. The thesis work will include algorithm development and implementation and evaluation of physics performance in terms of efficiency and fake rates and FPGA logic resource occupancy and timing.
Tipologia: sperimentale / detector / computazionale-algoritmica
Development and study of the performances of CNN and Graph Neural Networks on hardware accelerators (FPGAs/ACAPs/GPUs) for the High Level trigger of the ATLAS experiment
sviluppo di modelli di DNN/RNN/CNN/GNN di ultima generazione per l'identificazione di eventi dovuti a processi di fisica interessanti nel trigger di alto livello (software) dell'esperimento ATLAS. Implementazione degli algoritmi su coprocessori hardware (FPGA/ACAP/GPU) utilizzando librerie software per l'ottimizzazione e la sintesi di nuova generazione (Xilinx VITIS AI, Intel Open VINO) e misura delle prestazioni rispetto ad algoritmi convenzionali.
Tipologia: sperimentale / computazionale-algoritmica / analisi dati
Study of novel Deep Graph Network and Transformers models for particle identification and jet particle flow in the IDEA dual readout calorimeter for future e+e- colliders
Dual-readout calorimetry has emerged as a technique for measuring the properties of high-energy hadrons and hadron jets that offers considerable advantages compared with the instruments that are currently used for this purpose in experiments at the high-energy frontier. The IDEA detector concept for future lepton colliders plan to use a dual-readout fibre calorimeter equipped with fast processors (FPGAs) that allows to implement advanced AI algorithms for reconstruction and particle flow analysis for offline and real-time environments (trigger). The student will work on the design and development of state of the art and novel Deep Learning algorithms based in geometrical deepl learning and in the performance assessment in the context of the identification of different decays of tau leptons and for the particle flow reconstruction. The research works may also includes study of the physics perfromance messured on different benchmark physics processes of interest for the FCCee accelerator program.
Tipologia: computazionale-algoritmica-sperimentale / analisi dati
Search for Dark Photons and Long Lived Particles signaturespredicted by New Physics models with the ATLAS experiment at LHC
Several theoretical models of new physics beyond the Standard Theory predict the existence of hidden sectors that are weakly coupled with the sector of the Standard Model, offering solutions to some of today's most interesting theoretical / experimental problems (dark matter, naturalness, etc.). Dark Sectors are a very interesting example of such models in which the two sectors are coupled through Higgs and vector portals in which a new light particle (dark-photon) couples with the photon by kinetic mixing, producing peculiar experimental signatures consisting of collimated jets of Standard Model particles produced both in prompt signatures and in signatures with secondary vertices separated from the primary interaction vertex. The thesis concerns the development and optimisation of an analysis dedicated to dark-photon research based on the entire sample of high-energy and statistical data recorded by the ATLAS experiment during Run 2 and Run 3 of LHC.
Tipologia: sperimentale / analisi dati
Study of di-Higgs production with the ATLAS experiment at LHC
According to the Standard Model, the Higgs boson can interact with itself, resulting in the simultaneous production of two Higgs bosons ("di-Higgs production"). This is expected to be a very rare process – so rare that, according to the Standard Model, physicists will need around 20 times more data than available today to be able to measure it. This will be possible with the High-Luminosity upgrade of the LHC. However, physics beyond the Standard Model may enhance the di-Higgs production rate, by altering the strength of the Higgs self-interaction or through an intermediate heavy particle. The thesis concerns the development and optimisation of a dedicated analysis for the channel HH->bbtautau based on the dataset that ATLAS is collecting in the just started Run-3 of the LHC machine. In this context different task are possible, ranging from data analysis and optmisation, to trigger studies, to development of machine learning tools.
Tipologia: sperimentale / analisi dati / computazionale
Topics in Quantum Computation and Quantum Machine Learning:
Sviluppo e implementazione di nuovi algoritmi di Quantum Machine Learning su near-term quantum device (Quantum Anomaly Detection, Quantum-VAE, Quantum-GAN, Quantum Normalizing Flow and Quantum Diffusion Models) e applicazioni in diversi contesti della fisica di base e applicata.
Argomenti: Quantum Computing, Quantum Machine Learning, Differential Programming, Simulazione, Implementazione e ottmizzazione su hardware quantistico
Tipologia: computazionale-algoritmica-sperimentale-teorica, also togheter industrial partners
Sviluppo e implementazione di algoritmi di Deep Learning Classico per la preparazione, monitoring e ottmizzzazione di computer quantistici: Transpiling, Quantum Noise simulation, Qubit error correction, ...
Argomenti: Quantum Computing, Machine and Deep Learning
Tipologia: computazionale-algoritmica-sperimentale-teorica, also togheter industrial partners
Topics in Machine Learning, Deep Learning, AI and Physics (foundational or applied:
Artificial Intelligence for non-linear spectroscopy (insieme al gruppo di spettroscopia Raman del Prof. T. Scopigno)
La spettroscopia Raman non-lineare è uno strumento potente in grado di indagare le proprietà vibrazionali della materia su scala atomica. Rispetto alla spettroscopia Raman convenzionale, presenta numerosi vantaggi, come la possibilità di mappare fenomeni ultraveloci e determinare il moto atomico su scale temporali del femtosecondo. Tuttavia, a causa della non linearità dei processi ottici su cui si basa, i segnali misurati sperimentalmente sono generalmente più complessi e difficili da interpretare: le forme di righe possono apparire sovrapposte ad un segnale di background e subire forti distorsioni, con profili spettrali che possono apparire sia negativi che dispersivi. La tesi ha carattere teorico-sperimentale, prevede infatti di sviluppare tramite algoritmi di Intelligenza Artificiale una Rete Neurale in grado di isolare il segnale Raman dai contributi non-lineari spuri. Gli algoritmi verranno allenati mediante opportuni training set ottenuti dal calcolo delle risposte Raman non-lineari per sistemi modello. Come benchmark per la validazione del protocollo sviluppato saranno utilizzati dati acquisiti sperimentalmente su sistemi reali
Tipologia: sperimentale / laboratorio / computazionale-algoritmica
Studio di algoritmi di Deep Learning basati su Graph Neural Network per la classificazione e la ricomposizione di oggetti solidi divisi in frammenti
La ricostruzione di oggetti solidi divisi in frammenti o regioni di dimensioni e caratteristiche diverse è un problema non risolto da lungo tempo, che ha interessato le comunità di grafica computazionale, matematica, e più recentemente del machine learning. A differenza del caso 2D la complessità maggiore del caso 3D fa si che non esistano ad oggi tecniche generali consolidate per affrontare queste casistiche. Negli ultimi anni in particolare l’applicazione di algoritmi di deep learning a questi problemi su oggetti 3D ha portato a risultati significativi in campi molto diversi, che vanno dalla medicina, alla fisica fino all’ambito dei beni culturali. Si veda a tal proposito l’applicazione degli algoritmi di deep learning alla catena di ricostruzione dell’Esercito di Terracotta (inserito nell’elenco dei patrimoni dell’umanità dell’Unesco). Si propone una tesi di carattere teorico-sperimentale che prevede lo sviluppo di algoritmi innovativi di deep learning basati su Graph Neural Networks per la ricostruzione di un oggetto a partire dai suoi frammenti. In una prima fase verrà sviluppato il modello teorico, ed in seguito l’algoritmo verrà applicato ad uno o più casi reali nel contesto della ricostruzione di manufatti antichi.
Tipologia: computazionale-algoritmica
Applicazioni avanzate di Machine Learning e Deep Learning in fisica applicata alla medicina
Argomenti: sviluppo di nuovi algoritmi e applicazioni in imaging medico (MRI, CT-Scan, X-ray), applicazioni in radioterapia (Tomotherapy QA), applicazioni in diagnostica/prognostica medica, sviluppo di nuovi algoritmi per la correzione di movimento e il denoising di immagini MRI in fluoro 19
Tipologia: computazionale-algoritmica / analisi dati / sviluppo dimostratori
Development of novel physics inspired Deep Learning and AI explainability models
Arguments: development of physics inspired Deep Learning model to simplify and enhance transparency and interpretability of machine learning models
Tipologia: computazionale-algoritmica / machine learning / fundational
Sviluppi teorici in topological quantum field theory e sviluppo di nuovi algoritmi per l'encoding topologico di informazioni basati su geometrical deep learning (graph neural network equivarianti per trasformazioni fi gauge)
Argomenti: QTFT, spin networks e materiali topologici, Quantum Neural Network, Deep Learning, Equivariant Graph Neural Networks
Tipologia: teorica (teoria dei campi) o computazionale-algoritmica (QNN/DNN)
Sviluppo di modelli generativi basati su Dynamic Graph Neural Networks per la simulazione e spiegazione di modelli fisici basati su sistemi di particelle interagenti con proprietà vetrose (spin glass), oppure basati su modelli di interazioni nucleari di bassa energia
le transizioni vetrose costituiscono un fenomeno onnipresente, osservabile sperimentalmente e numericamente, che si verifica nei materiali granulari, nelle sospensioni colloidali e nelle cellule biologiche, e in moltissimi altri sistemi fisici. Comprenderne le cause è un'importante questione di ricerca ancora aperta. In queso contesto il lavoro consiste nello sviluppo, implementazione e studio delle proprietà di modelli di machine learning basati su Graph Neural Network per predire l'evoluzione nel tempo di sistemi vetrosi unicamente dalle configurazioni iniziali e/o a tempi successivi, e di simulare nuove configurazioni realistiche .
Sviluppare modelli affidabili ed efficienti per simulare le interazioni nucleari è di fondamentale importanza nelle applicazioni di adro-terapia. Il lavoro di tesi consiste nel costruire un mdoello genrativo basato su graph-VAE per emulare il modello BLOB ("Boltzmann-Langevin One Body"), sviluppato per simulare interazioni di ioni pesanti fino a poche centinaia di MeV/u, e reazioni 12C nello stesso dominio energetico. T
Tipologia: computazionale-algoritmica
Proposte tesi Laurea Triennale: contattare il docente